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Logistics

Uninformed Search

Informed Search

Adversarial Search

Today: CSP in a search context

Friday: Active learning session (no exam)
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Constraint Satisfaction Problems

Search Problems: We treat the state as a type of black box
essentially.

Constraint Satisfaction Problems: The state is defined by variables
X with values from some domain D.

The goal test is a set of constraints specifying allowable combinations
of values for subsets of variables.

We can use this to create general-purpose algorithms with more
power than standard search algorithms
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Map Coloring

Variables: In our map coloring example, the variables are each region.

Domain: The colors we are setting the map to.

Constraints: All adjacent regions must be different colors. No two
regions which share a border can be of the same color.
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Map Coloring
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Map Coloring
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Example: 4-Queens

State Variables/Domain: 4 queens in 4 separate columns (domain is
where each queen can be located.)

Operations: Move the queen within the column.

Constraints: Current number of attacks.

Goal Test: No attacks
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Example: Sudoku
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Example: Sudoku

Variables/ Domain: We have each cell representing a variable, and
the domain of each cell is 1 through 9 for any cell that is empty.

State: Any complete board where each value is filled.

Goal State: Column, Block, and Row constraints on each of the
values are met.
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Example: 8-Puzzle

Variables: The 9 cells of the puzzle, the domain is the value in each
cell, Blank or 1 through 8.

State: If we have a value for each cell we have a state.

Constraints/Goal: To have each piece in the spot it is required to be
in.
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Constraint Graph
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Constraint Graphs

In a constraint graph nodes are variables and edges (we will refer to
sometimes in this lecture as ’arc’s) show the various constraints.

Most of the time with CSP problems we will convert into this kind of
a graph structure in order to perform our searches.

Note: Tasmania is an independent subproblem, it does not matter
what color we choose it to be.
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Constraint Variables

Discrete variables: With these we can consider two types of contexts
finite domains and infinite domains. An example of a finite domain
would be Boolean Satisfiability problems (probably seen in CS224 or
CS125). An infinite discrete domain might consist of integers or
strings, etc. This requires some formalization for talking about these
constraints. Linear constraints placed on these are solvable.

Continuous Variables: Linear constraints are solvable in polynomial
time using linear optimization methods (linear programming).
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Constraint Variables

Unary Constraints: Constraints that involve a single variable. South
Australian cannot be green.

Binary Constraints: Constraints involving a variable pairs, SA!=
WA.

Higher Order Constraints: Constraints that involve 3 or more
variables at the same time. (think of this as solving some linear
algebra problem with column constraints)

Soft Constraints: Also called ’preferences’ by some texts. In our
coloring example we might say that red is better than green. We
might represent this by a separate cost for each variable assignment
which adds another dimension for solving. We call this Constrained
Optimization.
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Real World CSP Examples

Timetable Problems (what class is offered in what classroom)

Transportation Scheduling

Spreadsheets

Factory Scheduling

Floorplans
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Standard Search Formulation

Initial State: The empty assignment {}

Successor Function: We want to assign a value to an unassigned
variable that does not conflict with the current assignment. This
process needs to fail if there is no possible assignment that matches
our constraints.

Goal Test: Test that the current assignment state is complete and
meets all the constraints.

This setup is going to be the same for all CSPs.
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Backtracking Search

Backtracking is the basic ’uninformed’ search model for CSPs. It is
just doing search with a fixed method.

If we have a CSP with single variable assignment, backtracking is
equivalent to Depth-First Search.

We only need to consider assignments of a single variable at each
node so if we are at a depth d, then there are dn leaves. (where n is
the number of variables we are considering).

Variable assignment in this setting is commutative, so in our map
coloring example an assignment set like [WA = red and Tasmania =
Blue] is equivalent to [Tasmania = Blue and WA = red]

Backtracking can solve n-queens up to about n=25
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Backtracking Algorithm Pseudocode
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Map Coloring with Backtracking
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Map Coloring with Backtracking
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Map Coloring with Backtracking
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Map Coloring with Backtracking
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Improving Backtracking

What variable should we assign next?

In what order should values be tested?

Can we have some earlier failure detection on a given branch?

Can we use something in the problem structure to give us an
advantages?
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Minimum Remaining Values

For this improvement we say that we want to if possible always
choose the variable with the fewest remaining legal values.
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Minimum Remaining Values
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Degree Heuristic

What happens if there is a tie between two variables after applying
the Minimum Remaining Values technique?

We can use a degree heuristic to choose the variable with the most
constraints on the remaining variables.
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Degree Heuristic
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Least Constraining Value

With a given variable we wnt to pick the least constraining value.

By least constraining we mean that if there is some value that rules
out the fewest options on the other remaining values going forward
we want to choose that.

With these improvements we can get up to 1000 queens.
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Least Constraining Value
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Forward Checking

Concept: Keep track of all remaining legal values for each
unassigned variable.

Terminate the search loop when any of the variables no longer has a
legal value.
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Forward Checking
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Forward Checking
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Forward Checking
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Forward Checking
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Constraint Propagation

Forward checking is just propagating information from assigned to
unassigned variables. It doesn’t provide any early detection for
failures.

Constraint propagation methods on the other hand repeatedly enforce
all these constraints locally at each step.
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Constraint Propagation
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Arc Consistency

The easiest form of constraint propagation is called arc consistency.

We treat each edge of the graph as an arc and for every set of
possibilities at each pair of nodes, we say is consistent if for every
value (x) at one node there is some allowed (y) at the second.

If The set of variables at the node with x in it loses a value based on
some new assignment, we then need to recheck all the neighbors of
that node in the graph to see if they remained consistent.

It doesn’t matter when this is ran, it can be either immediately run
after each new assignment or at the start of each new round. Both
are equivalent.
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Graph Example
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Arch Consistency Example
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Arc Consistency Example
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Arc Consistency Example
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Arch Consistency Algorithm
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Map Graph
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Loopless Graph Example
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Tree Structured Graphs

In a graph like the example on the last slide there are no loops in the
constraint edges. In these kinds of cases the complexity can be
reduced.

In the case of a general CSP the worst-case time is O(dn)

This property also applies to the logical reasoning we have already
seen earlier in the class.
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Tree Structured Graphs

24

24Artificial Intelligence: A Modern Approach, Norvig and Russell, 2020
Michael McConnell (University of Vermont) Artificial Intelligence March 15, 2022 46 / 50



Cutset Conditioning
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Iterative Algorithms for CSP Solving

Hill Climbing and other similar algorithms generally are only working
over sets of ’complete’ states. ie all the variables are assigned to
something.

This doesn’t work well for CSPs so to make it work we allow states to
have unsatisfied constraints and allow the reassignment of variable
values.

When you select what ’next state’ to attempt in the Hill Climb, we
randomly select some variable that is conflicted in the current state.

Then to select the value for that variable we simply pick a value that
violates the fewest constraints. ie h(n) in your hill climb is just the
total number of violated constraints.
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Critical Ratio
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Artificial Intelligence: A Modern Approach, Norvig and Russell, 2020
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