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ABSTRACT

The utility of current metrics used in genetic programming
(GP) systems, such as computational effort and mean-best-
fitness, varies depending upon the problem and the resource
that needs to be optimized. Inferences about the underlying
system can only be made when a sufficient number of runs
are performed to estimate the relevant metric within some
confidence interval. This paper proposes a new algorithm
for determining the minimum number of independent runs
needed to make inferences about a GP system. As such, we
view our algorithm as a meta-metric that should be satisfied
before any inferences about a system are made. We call this
metric COSMOS, as it estimates the number of independent
runs needed to achieve the Convergence Of Sample Means
Of the Order Statistics. It is agnostic to the underlying
GP system and can be used to evaluate extant performance
metrics, as well as problem difficulty. We suggest ways for
which COSMOS may be used to identify problems for which
GP may be uniquely qualified to solve.
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1. INTRODUCTION

Over the past ten years, an increasing number of researchers
have published criticisms of the statistical validity of popular
metrics used in GP. These criticisms have been inspired by
Angeline’s original observation that Koza’s computational
effort [9] is a random variable [1] [2]. This body of work has
contributed a variety of conclusions, ranging from modifying
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how cumulative probability of success [9] ought to be calcu-
lated, analyzed, and used [13] [17] [16] [18] [4], to questioning
the very semantics of such metrics [12]. Some of the criti-
cisms cast upon computational effort have been echoed for
other metrics [15], revealing an underlying discomfort with
the purpose of and statistics behind performance metrics in
GP.

Designing new metrics requires a balance between the the-
oretically justified approaches of mathematical statistics and
the realities of data-driven analysis. An apt illustration of
this balance can be seen in the choice of algorithm for hy-
pothesis testing. Daida et al. use the Mann-Whitney U-
test, a non-parametric measure, in their work [5]. While
there is strong justification for using this approach, Pater-
son and Livesey later found that such nonparametric ap-
proaches were no more useful than t-tests [14]. This exam-
ple illustrates the merit of choosing techniques for analysis
on the basis of sound statistical argumentation and then re-
vising such approaches via experimental verification. This
perspective strongly motivates the framework of COSMOS.

Any GP experiment can be viewed as a three-tiered sys-
tem, where the parameter settings and variable choices at
each tier contribute to the final outcome. At the first tier
we have problem parameters (e.g. instruction sets). At the
second tier we have system parameters (e.g. genetic op-
erators and their settings). At the third tier we have ex-
periment parameters, defined by the population size, the
maximum number of generations, and the number of inde-
pendent runs. The technique described in this paper focuses
upon this third tier of parameters. We focus most intensely
upon determining the appropriate number of independent
runs for a system.

While others have addressed the importance of perform-
ing a sufficient number of independent runs, so far as we
know the only paper to treat the question experimentally
has been Luke 2001 [11]. This work specifically addressed
the tradeoff between independent runs and number of gen-
erations. Our approach and motivation differs; where Luke
addressed the question “Given finite CPU hours, how should
I best schedule my runs?,” we address the question, “Given a
GP system with a set of parameters for some problem, how
many runs should we perform before we are confident in our
outcome?”

We answer this question using the convergence of the sam-
ple means for the order statistics, which we call COSMOS.
We treat the population of individuals at some generation ¢
as a sample drawn from the underlying program space. Of
course, since an individual is rich collection of features, we



must choose some function of the individual to study. The
quality of this function has a large impact on the quality of
this metric. We choose the fitness function, since its design
ought to give complete information about the quality of an
individual. Though we are now handling functions of indi-
viduals, we will refer to both the individual and the value of
the function of the individual (i.e. fitness) as the individual
and will clarify only when the context is not clear.

Once we have chosen the function of interest, we can order
individuals. Then, depending upon our problem and system
parameters, we choose a set of ordinals.! Take, for example,
the individual with the maximum fitness. We then calculate
the sample mean of the maximum fitness across all runs for
some generation ¢. When we are confident that an additional
data point will not have a significant impact on the sample
mean of the maximum fitness at generation ¢, we return a
recommended minimum number of runs for that generation.
This process is performed across all selected ordinals across
all runs, culminating in the return of the maximum number
of runs. For reasons we will discuss in Section 2, it is possible
for the recommended number of runs to not converge. If
we find that the system converges, we argue that it is then
statistically sound to make inferences about the data we
have collected using that system.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the mathematical constructs that underpin
our arguments. Section 3 proceeds with a detailed descrip-
tion of the COSMOS framework. Section 4 describes the ex-
periments we performed to first verify our hypotheses about
the behavior of COSMOS. We conclude with recommenda-
tions on how to use COSMOS and outline our proposed
future work in sections 6 and 5 respectively.

2. MATHEMATICAL PRELIMINARIES

Any entity in a stochastic system whose value is uncertain
can and should be treated as a random variable. Recall that
a random variable is drawn from an underlying distribution
that is defined over a set, called its support. A probabil-
ity density function (pdf) is a function that maps events to
probabilities. The domain of a random variable is then the
set of all possible events. All definitions for statistical terms
are drawn from [3] unless otherwise noted.

We begin by considering how Koza’s J? is generally treated,
since this will provide the foundation for the event space of
the random variables described in COSMOS. Koza’s Y (7)
is stated to be the probability that at least one individual
satisfying some success predicate, which we shall call s, is
found at generation i. This can be computed by counting
the number of independent runs that find a successful in-
dividual at generation ¢ and dividing the sum by the total
number of runs. Let

1 FeMisG)=1
g(i) = . o) =
0 Vje M, :s(j) =0,

where the value of s indicates whether the predicate has been

Ordinals” throughout the paper will refer to the set of
chosen order statistics.

2y is the first statistic calculated when computing computa-
tion effort. We focus our attention on it because its compu-
tation is relevant to COSMOS. Since computational effort
is a function of ), any assertions we make about applicable
properties of ) also hold for computational effort

met in the obvious way and M denotes the population. Then
Y can be more clearly stated in terms of its complement,
V(i) = 1—P(g(i) = 0), since by the Kolmogorov axioms, we
know that the probability that a given generation contains at
least one success is the sum of the probabilities that a given
generation contains from one success up to | M| successes.
Suppose that we are running some GP system and are
currently in generation i. We want to know the probabil-
ity that the next generation contains a success. The event
space described by this scenario is different from the one
used to compute ). Since the composition of each gener-
ation depends upon the generation that preceeded it, the
probability in question here would be described as

P(g(i +1) = 1| Mo, g(i) =0, ..., g(0) = 0)

This difference highlights the necessity of studying the ef-
fects of performing multiple runs. We must not only per-
form multiple independent runs to estimate ), but also in
the experimental process, to make metrics such as ) mean-
ingful. That is, if we were to use ) to determine the number
of generations needed to satisfy s, we would be basing such a
decision on a metric that describes a larger event space than
the one we are currently considering. We assume when we
compute ) that the sample is sufficiently large to represent
the underlying event space. This event space is the set of all
possible populations reachable by generation i. Clearly this
set has the potential to be intractably large. However, if we
suppose that we have a large enough sample, i.e. number of
runs, we can estimate the marginal probability, giving us ).

Since we do not know the underlying distribution of ),
we must devise an estimator to approximate it. Recall that
an estimator is a function from a sample to some value in
the domain of the random variable being estimated. Calcu-
lating the frequency of generations containing a success, as
described above, is an estimator for ), which we denote ).
As has been noted in [17] and [16], computational effort is a
point estimator and should be reported with an appropriate
confidence interval. Since computational effort can be seen
as a function of ), the same argument applies.

Like ), COSMOS draws from the marginalized event
space. Though drawing from the same underlying data
set, COSMOS computes an entirely different set of values.
Rather than considering the indicator random variable de-
fined by g, COSMOS records the frequency map for some
function f over every generation i for every run k. For now
we will allow f to be the fitness function. However, as a re-
sult of this, all subsequent assertions about the behavior of
COSMOS are only as good as the fitness function. Further
implications are discussed in Section 5.

We let M;, denote the population of run k at generation i.
Each of the j individuals in M;, can be ordered based upon
f(4). These individuals are treated as random variables, and
so any function of the individuals is itself a random variable,
provided that it meet certain criteria, again discussed in
further detail in Section 5. Call the b*" ordered random
variable produced by f(j), X(). Then X (3 is the b" order
statistic.

Each b'" order statistic has a pdf that is defined by the
underlying population’s cdf and pdfs. These are not guar-
anteed to have a closed form. We will not be considering
the form of the order statistics’ pdfs, since they are complex
and not analytically relevant to our analysis. The impor-
tant point to note is that they depend upon both the pdf



and cdf of the underlying distribution of the sample and
thus also rely upon a unified event space. Order statistics
are commonly used in nonparametic statistics, where data
reduction is not possible. While it is possible that some
problems may have, for example, populations that can be
described by an exponential family distribution, we cannot
make this assumption across all problems and so must as-
sume that the underlying probability distribution is repre-
sented by an arbitrarily large number of parameters. While
in theory we recommend computing COSMOS for all avail-
able order statistics, we recognize the infeasibility of such a
task and instead recommend the standard min, max, and
quartile samples.

Now that we have motivated our choice of object of study,
we will provide the justification for the algorithm that fol-
lows. We appeal to the weak law of large numbers, which
states that if X (), ..., X(s), are independent and identically
distributed (iid) and Ju : E(X(p), ) = p, then limp 00 X (1) =
w (in probability), where X () is the sample mean of the b'"
order statistic. This gives rise to the name of our metric,
since to answer the question of how many runs we need to
perform, we will be looking for the convergence of the sam-
ple means for the order statistics. If the two assumptions
on which the weak law of large numbers is predicated are
true, then we know that this sample mean will eventually
converge.

Before we continue with the algorithm, we will need to
address two other considerations. The first is the validity
of our assumptions. We have already argued how and why
the b ordered sample at the ‘" generation for any given
run is independent from its analogue in any other run. The
remaining assumption that we must consider is whether the
underlying distribution has an expectation. Consider the
case where the probability does not converge; then we know
that one of our assumptions is wrong and would like to be-
lieve that the most likely candidate is the existence of the
function’s expectation. While this does not bode well for our
computational resources, it does reveal an exciting property
of COSMOS, allowing us to identify problems that GP may
be uniquely qualified to explore. This aspect of COSMOS
is discussed further in Section 6.

The second consideration is how to translate a statement
about behavior occurring in the limit to the situation where
we are constrained to a finite number of runs. COSMOS
is an algorithm that either returns a recommended number
of runs or an error indicating that more runs are needed.
As such, it is more appropriately described as an estimator
for the number of runs after which additional runs will only
perturb the sample mean of each of the order statistics by
some multiplicative error. We estimate its error using the
bootstrap method [8].

3. ALGORITHM

We first define our inputs, constants, and associated terms
in Table 1. These terms are used in Algorithm 1.

This algorithm begins by launching a pre-specified mini-
mum set of runs. We set our initial 7 to be 30. This number
was chosen arbitrarily. The baseline number of runs could
have been 10; it could also have been 50 or 100. We would
like it to be large enough so that the chances of calculating
the ratio of the k'* mean and the k'* + 1 mean are small,

Algorithm 1 COSMOS estimator. We start with 30 inde-
pendent runs and calculate the mean fitnesses for each of the
ordinals for these 30 runs. We then recalculate the means
as we add more runs, until the ratio of the k** and k*" + 1
means are within a given range.

Input: ¢, the acceptable error in successive means
Output: Recommended minimum number of runs
R + 2r independent experiments
Partition R into two sets, R; and Rs
A < new array of size |Q|, initialized with zeros
for generation ¢ < 1 to maximum generation do
5: for ordinal ¢ € @ do

f — % Z]‘GRI eT‘T(q, Z?])

r 7
for k € Ry do
T+ (rxxT+err(q,i,k))/(r+1)
10: if 1 —e<Z/T <1+e¢€then
Algl +r+1
exit loop over Ra, begun at Line 8
else
T+ 7T
15: r—r +1
end if
end for
end for
end for

20: if Jar € A : ar = 0 then
Ry < r more experiments
Repeat this algorithm from Line 4
else return max(A)
end if

but small enough so that we do not waste computational
resources performing an excessive number of runs.

We argue that our algorithm stops launching new runs
when the sample means for the set of ordered random vari-
ables converges. We would like to be able to say that for
all k& beyond some k& run, y(b)k = (1= G)Y(b)k-f—l' € is
the true multiplicative error tolerance for the convergence
of the of the sample mean for the random variable X.
Then ¢ is also a random variable that we must estimate. We
treat the “true” € as an input to the algorithm. Consider,
for increasing r, how € behaves. We know that in the limit
€ approaches zero. Its range for small r is determined by
f, which consider here to be the fitness function. Our es-
timator only considers the multiplicative error for the last
update.

Since it would be computationally expensive to calculate
the means of all the order statistics for large populations (as
well as difficult to graph!), we choose some subset of ordinals
whose means to compute, which we call Q). The specific val-
ues of the ordinals will change depending upon the problem
and the nature of the evaluation function. Standard prac-
tice is to use the minimum, maximum, and median ordinals,
as well as the quartiles. For a population M, we let the
minimum and maximum be their usual values, and set the
ordinals located roughly at the median and upper and lower
quartiles to be M[[|M|/2]], M[[|M|/4]], and M][|3|M|/4]]
respectively.



Table 1: Terms used in the COSMOS algorithm.

Name Type Default value Description
r constant 30 Minimum number of runs and run block size
r’ variable 30 The actual number of runs used to obtain our estimate
€ input 0.01 Target multiplicative error
Q constant | min, max, quartiles | Selected order statistics
err(q,i,k) | function - Returns the error of the k** individual in generation ¢ for run k
Table 2: Experiment Parameter Settings as re- performance can be obtained by running the above reported

ported in previous publications. k is the number of
runs, max(i) is the maximum number of generations,
and |M] is the population size.

Source Problem k| max(z) | |M]
Luke 2001 | Symbolic Regression | 50 8192 500
Luke 2001 | Artificial Ant 50 2048 | 500
Luke 2001 | Even 10-Parity 50 1024 200
Daida 2001 | Binomial-3 600 200 500

Table 3: Baseline comparison of runs. k is the max-
imum number of recommended runs, min(:) is the
minimum generation recommending the maximum
/. .
number of runs, and @’ is the subset of ordinals rec-
ommending the maximum number of runs.

Luke 2001 COSMOS
Problem Runs | Gens. || & [ min(?) | @
Sym. Regression 50 8 97 | 184 {0}
Artificial Ant 50 32 96 | 1879 | {0}
Parity 50 | oo [ 43| 835 | {50}

4. EXPERIMENTS

The following experiments were performed as proofs of
concept. They establish the validity of COSMOS as a met-
ric and illustrate the types of inferences that it allows us
to make. Unless otherwise stated, all experiments use ECJ
[10]. All parameter settings not mentioned are ECJ defaults,
which correspond to those in [9], unless noted otherwise. For
all experiments, we use 7 to denote generation, ¢ to denote a
particular ordinal drawn from the ordinal set, called Q. M is
the population, which may be indexed by run or generation.
Finally, runs are denoted by k.

4.1 Baseline experiments

Our first set of experiments replicated the three experi-
ments performed in (Luke 2001) [11]. The three problems
considered were Symbolic Regression, Artificial Ant, and
Even 10-Parity. Symbolic Regression was run on z* 4+ z3 +
2? + = and used no ephemeral random constants (ERCs).
Artificial Ant used the Santa Fe trail. These three problems
use the same parameters as in [11], since this work addresses
similar questions. Parameter settings are listed in Table 2.

The outcomes for these runs are listed in Table 3. Runs
listed for (Luke 2001) are the number of independent runs
performed. Generations for (Luke 2001) are the recom-
mended minimum number of generations for some n runs.
Since the 50 runs actually performed are all greater than the
number of runs needed to reach the critical point identified,
we list the minimum number of generations suggested. This
is not meant to suggest that the author believes that optimal

number of runs for the listed number of generations. Rather,
given his sample size of 50 runs per problem, he inferred the
number of evaluations necessary for a critical point to be
reached and calculated the minimum number of generations
appropriately.

The numbers listed in the column marked k denote the
numbers returned by the COSMOS algorithm. These are
the maximum number of runs recommended over all genera-
tions and all X(3)s. The column marked min(i) is the mini-
mum generation that had found the globally maximum num-
ber of runs. The column marked @’ is a subset of the @ order
statistics for which the corresponding recommended runs is
equal to the global minimum number of recommended runs
at the minimum generation specified in the column marked
min(z). If the minimum, maximum, median, and quartiles
all yield the same number of recommended runs, we indicate
this by simply listing Q.

4.1.1 Symbolic Regression

Symbolic Regression yeilds the most interesting results.
Due to issues of computational resources, we could only anal-
yse two sets of incomplete data. The first set contains all
ordinal recommended runs up to generation 50. The second
set contain the minimum and lower quartile recommended
runs for all generations. Both are plotted in Figure 1. While
the lower quartile is fairly consistent, the minumum has high
variability over a large range. In fact, six ordinals “max
out,” recommending the total number of runs that were per-
formed, without reaching convergence. We will investigate
such behavior in greater detail over a shorter generational
period in the experiments that follow.

4.1.2 Artificial Ant

Given the incredibly small number of evaluations espoused
by Luke [11], we expected an early convergence in Artificial
Ant. Although the lowest generation for the maximum num-
ber of runs is fairly high, it is only marginally greater than
previous generations’ recommendations. In fact, it was a
small amount of fluctuation in the other ordinals that al-
lowed us to observe this variance. As shown in Figure 1, the
maximum number of requested runs after the 250" gener-
ation is fairly stagnant. Coupled with Luke’s observations,
this tells us that the version of the ant problem described
here on ECJ is extremely boring and perhaps should only be
used to establish baselines or test systems.

4.1.3 Even 10-Parity

The oo generations listed in Table 3 represents the be-
havior that Luke observed, that Even 10-Parity continues
improving over the entirety of its run. In our experiment it
was even more stagnant in its runs requests than Artificial
Ant. Its convergence illustrates an important distinction
between COSMOS and other metrics. COSMOS is not



Figure 1: Baseline Runs. Two-hundred ninety-nine independent runs each were performed for Artificial Ant
and Parity. Ninety-seven independent runs were performed for Symbolic Regression. Not all runs were used
in the calculations. These merely provided a pool from which we could sample for COSMOS.
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evaluating whether a system is good at finding solutions;
it evaluates whether a given system and a given problem
reach stasis when exploring their solution space. What we
see with Even 10-Parity is a system that remains consistent
across its generations. It might behoove us to attempt cal-
culating COSMOS with a smaller r to see if there is a lower
bound on the required runs (other than the obvious lower
bound of 1). Luke’s recommendation that Even 10-Parity
be run for an indefinite number of generations is consistent
with our conclusions.

4.2 Looking to the cOSMOS

We now turn our attention to a second set of experiments.
We reproduced the work of (Daida et al 2001) [6]. The
authors addressed how, all other things being equal, varying
parameter settings of a GP system could dramatically alter
problem difficulty. The object of study was the binomial-3
problem: z* 4 3z2 4 3z + 1. This problem had previously
been discussed in [5] in the context of the effect that random
number generators had on GP systems.

Seven different ERC ranges were tested: [—0.1,0.1], [-1, 1],
[—2,2], [-3, 3], [-10, 10], [-100, 100], and [—1000, 1000]. The
authors of [6] report having dramatically better hit rates for
ERCs in the ranges [—1,1],[—2,2], and [—3, 3] than for the
remaining ranges. As is shown in Table 3, they only ran
their experiments for 200 generations.

Figure 2 shows the results of these seven experiments.
The zeroth ordinal (marked with a red square in the im-
age) varied far more dramatically for these problems than it
did for our baseline. We first note that all of the problems
converged; that is, COSMOS found a minimum number of
runs for every problem. Given the greater variability of this
dataset, we validated with the bootstrap method.

4.2.1 Bootstrap Results

As mentioned previously, COSMOS is an estimator and
so its quality needs to be assessed. Since we cannot know the
underlying true values of our error term at a given number of
runs, we must use a substitute method that has been shown
to reliably estimate such a value.

The bootstrap method is a simple procedure for estimat-
ing the mean of some statistic of some sample via resam-
pling. Given some sample space S, we let our sample size
be some value n. We will resample n items from S some
B number of times. For each sample of size n, we compute
some statistic. In this case, it is the mean of the individuals’

Recommended Runs

g 4

Parity Symbolic Regression

Recommended Runs

T T T
4000 6000 8000

Generation

T T T T T T
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Generation

fitnesses. We then average over the B statistics to get the
mean of means of the samples [7].

Here we let each of the sample means be calculated from
k randomly chosen runs, where k is our recommended min-
imum number of runs we obtained via COSMOS. These
means over k runs are each now random variables whose
sample means we wish to find. We set B, the number of
samples of size k, to be 100. The larger the size of B, the
better. Since we have 600 runs for each range to choose
from, we could have chosen even larger B. In any case, the
results of our bootstrap are recorded in Table 4.

What does the bootstrap mean give us? COSMOS is ef-
fectively returning an estimate for the lower bound on the
sample size for each of the B samples in the bootstrap. The
sample means are means of the underlying order statistics.
The bootstrap means are means of these means. The boot-
strap means should follow a Gaussian distribution by the
Central Limit Theorem. The sample means are point es-
timators for the distribution of order statistics, which as
previously stated, depend upon the underlying fitness func-
tion’s cdf. However, the assertion we are making is that the
sample means are close enough to the bootstrap’s mean, and
by extension, the true mean of the underlying distribution.
The column labelled “Outliers” in Table 4 lists the number of
runs that had means that were outside of two standard de-
viations of the bootstrap sample mean, using the bootstrap
variance. If the underlying distribution of the bootstrap is
Gaussian, then according to the so-called “Empirical Rule,”
95% of the data points ought to lie within two standard
deviations of the mean. Note that almost half of the runs
from the range [—1000, 1000] are outside where they should
be. As we will discuss in the next section, we believe that
this is related to the fact that [—1000,1000] ought to have
been run for more generations.

4.2.2 Qualitative Results

What does COSMOS tell us about the experiments we
performed? Clearly convergence was achieved for every or-
dinal. Recall that Daida et al. found a significantly larger
number of ideal solutions for the ranges [—1,1], [-2, 2], and
[—3,3]. Note how higher ordinals in the lower generations
for range [—1,1] vary more, but peter off beyond the 50th
generation. The zeroth ordinal is highly concentrated about
35 recommended runs. We are not particularly concerned
about the variation in the zeroth ordinal in the final gen-
eration, since it is not significantly more than the variation



Figure 2: Results of the Binomial-3 runs.

constant ranges. All other experiment parameters for these problems were identical.
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Figure 3: Comparison of sample means calculated as a result of the COSMOS algorithm against the bootstrap’s

means.
(O Experimental Sample Mean
O Calculated Bootstrap Mean
Binomial3-thousand Binomial3-two Binomial3-one
g g g,
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Table 4: COSMOS data for the Binomial-3 problem

ERC Range k | min(i) | Q Y(k)m;nm Bootstrap Y(k)mmm Bootstrap S, Outliers
[—0.1,0.1] 55 79 0 | 0.0025077515516979125 | 0.002426019616689402 | 3.0361977338903115E-7 18
[—1000, 1000] | 90 146 0 | 3.5610724883002216E-4 | 1.1652259268579838E-4 | 3.628311661897609E-9 298
[—100, 100] 73 106 0 | 3.404128999658628E-4 2.756694720138498E-4 | 2.6154871044745273E-8 12
[—10, 10] 73 65 0 | 0.002012428747336066 0.002203810692886493 | 4.3686612445135404E-7 23
[—3,3] 58 87 0 | 0.006597798204774809 0.007402139900564542 | 1.8373880939784997E-6 27
[—2,2] 67 25 0 | 0.005312467235404943 0.00842622948054855 1.5694617101539245E-6 3
[-1,1] 48 174 0 | 0.014475639242731488 0.013910600131531288 | 3.6513049530637364E-6 5




at the beginning of evolution. If we were unhappy with the
performance of this system, in terms of producing ideal indi-
viduals, we would recommend running for more generations.
The variability of the requests for more runs at the end of
evolution indicates that there is still diversity in the worst
individuals in the population, indicating that it is possible
move out of a local maximum into a new portion of the
program landscape.

The results for ranges [—2,2] and [—3, 3] are similar, but
with a greater range for the recommended runs. While the
maximum number of runs recommended for the range [—2, 2]
is greater than the maximum number of runs recommended
for the range [—3, 3], [—3,3] a new cluster of recommended
runs begins to emerge about the 50 mark.

Increasing the range to [—10, 10] begins to give us the con-
vexity of the zeroth ordinal that we have been expecting to
see when the system converges and has been run for a suf-
ficient number of generations. There appears to be some
more variability in the ordinal corresponding to the lower
quartile, but it is unknown whether this is statistically sig-
nificant. We cannot compare it with the behavior of the
lower quartile for lower ERC ranges because their variabil-
ity is obfuscated by the minimum run requirement (here,
30). Its behavior appears very similar to the behavior of the
range [—0.1,0.1].

The behavior of the range [—100,100] is less clear. It
leads into an examination of the range [—1000, 1000]. We
start to see more variability in all ordinals up to the fiftieth
generation. Note that that the maximum number of runs
recommended occurs late in evolution, at the 174" genera-
tion. We would highly recommend running this experiment
for more generations and re-evaluating.

S. FUTURE WORK

This paper is an exploratory analysis of a new approach
for analyzing the performance of different genetic program-
ming systems on different problems. As such, there are a
number assumptions that ought to proven. There are also
alternate avenues of investigation, which we examine below.

Improve the reliability of the algorithm. The re-
sults we found in the Binomial-3 example indicated that our
algorithm may fail when the number of generations is in-
sufficient. It also indicates that we may want to take the
variance of the recommended runs into account.

There is one obvious area for improvement. The COS-
MOS algorithm estimates € by only considering the ratio of
the k" and the k*® + 1 mean. Consider what might hap-
pen were to encounter samples drawn from a distribution
that has an infinite expectation, e.g. a Cauchy distribu-
tion. It is possible to us to falsely conclude convergence
when encountering a Cauchy distribution if we suddenly see
a value that is within the multiplicative error of our current
sample mean. However, given the high variance of such dis-
tributions, we consider the likelihood of encountering this
situation to be very small. Furthermore, we chose to study
the convergence of the sample mean of the order statistics,
rather than the convergence of the sample medians of the
order statistics, precisely because the mean is more sensi-
tive to outliers. However, a more thorough mathematical
and experimental analysis should be done. We recommend
modifying the COSMOS algorithm to also track the rate of
change of the ratios of the sample means and only return val-
ues when the error of the error is within some range. There

is extensive related work in the machine learning literature
regarding the estimation of hyper-parameters that may be
useful for such modifications.

Draw from the MICMUC literature for additional
evaluation techniques. The choice of the number of ini-
tial runs, r, warrants further study. We feel it is directly
analogous to determining the burn-in period of Gibbs Sam-
pling.

Revisit the fitness function. Clearly individuals in
a population are not single points from a single distribu-
tion, but instead a bag of features. If we take, for example,
the error function of the individuals, this may represent an
alternate distribution from the fitness function. We hope
the distributions are the same, but do cannot know with-
out investigating further. As mentioned earlier, COSMOS
is only as good as the function generating our data. That
function must map individuals to ordered values. If we con-
sider unique genotypes (programs) to be elements of the set
doing the mapping, then the error function may not be in-
jective. This should not be surprising to most practitioners
of genetic programming; the space of possible phenotypes
is often significantly smaller than the space of genotypes.
However, in the absence of a semantic understanding or or-
dering of the genotype, we are restricted in our analysis to
meaningful measures - which in the above examples are error
terms. We must be careful to not choose a function alters
the ordering of the underlying system.

Use for knowledge discovery and building a taxon-
omy of problems. If you're reliably getting good results a
high percentage of the time (based on traditional metrics),
was the problem worth using GP to begin with? Could an-
other technique have done better? Probably. We suggest
using COSMOS to identify which problems are “interest-
ing.” GP’s stochasticity gives it a clear edge for problems
that confound simpler models. In other branches of machine
learning, we are limited to a finite number of parameters and
cannot jump out of our local space. GP allows us to explore
areas of the program space that the designer may not have
considered. We believe that high variability in the lower
quantiles may allow a GP system to overcome deception.
From this it would follow that GP is uniquely qualified to
find problems that either (a) do not converge or (b) only
converge with a large number of runs, while showing high
variability in the recommended runs over many generations.
These hypotheses should be tested in future work.

Expand the applicability of COSMOS. The meth-
ods described in this paper have thus far only been applied
to genetic programming systems. We would like to verify
its utility for a broader category of techniques, from the
more general evolutionary computation community, to per-
haps even other forms of stochastic search.

6. CONCLUSIONS

The work outlined herein began as a an attempt to eval-
uate the utility of popular performance metrics for genetic
programming. As we considered the problems inherent in
computational effort and mean-best-fitness, it became ap-
parent that we needed to step back and reconsider whether
we were even asking the right questions. We realized we
couldn’t adequately answer, “under some given parameter
settings, can we find solutions (i.e. zero error programs)
in fewer computations and/or a higher percentage of the
time,” until we answered, “given our black box system, cou-



pled with some input parameter settings, are we adequately
exploring our program space?” While we have not answered
that question here, we believe COSMOS provides a foun-
dation for how to answer it. Past work has focused on de-
scribing problem landscapes, we accept that they are vast
and possibly unknowable. We instead focus on determin-
ing how much of that space a given system with a given set
of parameters can know. We also realize that performance
metrics will vary depending upon the desired outcome. Fun-
damentally, we are not seeking one metric to rule them all.
Instead we recognize the plurality of not only solutions, but
systems.
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